Pallet Performance in Automated Storage Systems

Presented by:

Ralph Rupert Manager Unit Load Technology

© 2017 MHI® Copyright claimed for audiovisual works and sound recordings of seminar sessions. All rights reserved.

What is X?

- X how does the pallet interact with the automated system
- X = f(input variables)

Pallet and System Interaction Variables

- Size
- Travel direction
- Lifting limitations
- Friction
- Load Capacity and deflection

Size

- Contrary to popular belief not all pallets are 48x40
- There is no standard 48x40
- Numerous examples of systems being installed only to find out the unit did not fit
 - Clearances too tight
 - Slave pallets add extra cost

ANSI MH1 Pallet Standard

- Published by MHI
- New revision published January 2016
 - Addition of alternative pallet materials
- Part 3 Wood Pallets
 - Contains standard tolerances
 - Lumber grades, dimensions
- Part 10
 - Pallets for Automated Systems
 - Written from research funded by MHI in mid 1990's

ANSI MH1 Pallet Standard – Part 10

- Defines several performance criteria
 - Size Variation
 - +0.125/-0.250 for length and width
 - +0.125/-0.325 for height

Travel Direction

- Interaction of conveyor system with bottom deck
 - Stringer pallet
 - Basically a unidirectional base
 - Block pallet
 - Perimeter or unidirectional base

Travel Direction

- Change of direction
 - Chain transfer
 - Turntable
- Forklift/AGV interface

Lifting Limitations

- Interaction with pallet openings
 - Forklift
 - Truck loading
 - Palletizer

Coefficient of Friction

- $-\mu_s = F_h / F_n$
- F_h is the force to initiate pallet movement
- F_n is the weight of the pallet
- Minimum 0.15
- Wood = 0.45, Plastic = 0.30

Load Capacity and Deflection

- Testing ASTM D1185 or ISO 8611
- Computer analysis
 - PDS or BestLoad
- How to interpret results

Load Capacity and Deflection - Testing

- Test actual load if it is only load used most are variable
- Typically using an inflatable airbag
 - Uniform flexible load worst case scenario

Load Capacity and Deflection

- Testing will determine averages
 - In ASTM D1185 determines safe load capacity
 - From average pallet failure using 2.5 safety factor
 - From average deflection limit of 1.9% of free span using 125% of safe load capacity
 - For a 44" free span on a 48" pallet acceptable limit is 0.84"
 - Part 10 sets a limit of 0.50" at safe load

Load Capacity and Deflection - PDS

Service Environment: Dry Environment (EMC <= 19%) Support Condition		Safe Maximum	Deflection at Maximum	User Specified Deflection	Maximum Load for Deflection	Critica	
Side View	End View	Load	Load	Limit	Limit	Membe	
Racked Acros <u>2 Beam S</u>							
Span = 44.00		2812 lbs.	0.69 in.	0.63 in.	1892 lbs.	Center Top Stringerbo	
Racked Acro <i>2 Beam S</i>							
	Span = 34.00	3666 lbs.	0.50 in.	0.63 in.	3396 lbs.	Interior Top Deckboar	
Warehouse <u>Stacked 1 Unit</u>		C	2				
		10108 lbs.	0.20 in.			Center Top Stringerb	
Stacked 4 Unit	Loads High	3888 lbs.	0.20 in.			Center Top	

Load Capacity and Deflection - PDS

- Safe maximum load is determined from lower 95% MOR of wood species and grade in specification
- Deflection at maximum load is based on average MOE for that load
- User defined deflection limit uses lower 95% MOE to determine load to reach the deflection limit
- In both methods a significant "safety margin" is employed

Summary

- The pallet is the interface between the product and the handling system
- The pallet specifications and performance are as important as any piece of equipment is the system
- The pallet should be designed with the handling system not after
- Don't assume the customer will know what pallet to purchase for their new handling system

For More Information:

Speaker email: rrupert@millwoodinc.com Website: <u>www.millwoodinc.com</u>

ANSI MH1Standard: http://www.mhi.org/free/8956

Or visit ProMat Booth S2441

