TURNING BIG DATA INTO USEFUL ANALYTICS

Presented by:

Mike Maris

Sr. Director, Transportation & Logistics

© 2017 MHI® Copyright claimed for audiovisual works and sound recordings of seminar sessions. All rights reserved.

WAREHOUSE & LOGISTICS

WAREHOUSE TECH

SHIPPING TECH

DELIVERY TECH

Systems get smarter, intelligently collaborate

- Trends & Distributed Interfaces
- Simplicity Via Augmented Reality
- Trailer Load Analytics

SOME KEY TECH TRENDS

Influencing New Thinking Around Business & Product Form Factors

New Energy Technologies

Distributed Wearables / Personal Area Networks / New User interactions

New Camera Capabilities / Analytics

OEM Automotive In-Cab Tech Growing

New Device Constructions

Real Time Business Intelligence / Analytics

VEHICLE MACRO TRENDS

Distributed Interfaces, Smartphone – Vehicle Coordination

Buick Intellilink

System syncs smartphone with vehicle system

Chevy Spark - MyLink Seamless integration between Smartphone and vehicle. Gets all infotainment from the smartphone, including leveraging the voice-activation button on the steering wheel.

MirrorLink[™] is based on a set of well established, non-proprietary technologies. It uses standard Internet technologies (such as Internet Protocol) for compatibility with a wide range of devices. It also uses technologies such as Wi-Fi, as well. Universal Plug and Play (UPnP[™]) is used for controlled access to applications. Virtual Network Computing (VNC[™]) is used to replicate the phone's display on the navigation screen and communicate user inputs back to the phone. Beside Bluetooth[™], audio can also be streamed using the Real-Time Protocol (RTP).

MirrorLink[™] also provides a mechanism that ensures only approved applications are accessible while driving. Applications will be approved using a standardize testing process that will be introduced later this year.

DISTRIBUTED INTERFACES

Vehicle Area Network

Small notifications displayed via windshield accessory without obstructing field of vision.

Information Snacking via T-OLED Display

LIVERY REPOUTE TO 21 MAIN ST

PROMAT

10.00

Head – Up, Eyes on the Road – Transparent Windshield accessory display connected via BT to MSI Mobile Computer – presents notifications, re-route information without the driver having to reference the primary mobile computer, which remains holstered or cradled while driving.

PERSONAL TECH MACRO TRENDS

Distributed Interfaces, Smartphone – Smartphone Coordination

Sony SmartWatch

Small Android, multi-touch companion device – provides notifications, call answering, widget display

Pebble SmartWatch

E-ink companion device – connects to i-Phone and Android devices. Most successful Kickstarter project ever

Moto Actv

Android GPS fitness Tracker and Music Player

Vuzix Smart Glasses M100

Android, iOS – compatible. Mid-2013 launch. companion to smartphone via BT or wlan.. Ergonomics, Size, weight, cognitive limitations

Google Glass

Prototype, advanced development. Legitimizing head-worn computer. Most likely, companion to smartphone. Size, weight, cognitive limitations

Worldwide market for wearable wireless technology

RCGennick Place | Chicage April 3-64.2017 Jaromatakhasecom

WAREHOUSE WORKER OF TODAY AND TOMORROW

RECondition Provide Contract Contract

NEXT – DISTRIBUTED INTERFACES

Personal Area Networks – Delivery / Hub Potentials

ANALYTICS PROBLEMS / SOLUTIONS

- Ties components to generate data
- Drives informed decision making
- Contextual information for user level

TRUCK LOAD OPTIMIZATION

Optimizing The Outbound Process

- Trailer loading refers to the process of loading the packages in the trailer.
- Currently, the process is operated completely by manual labor.
- Recent studies shows that a trailer's space is only about 70% occupied when it is considered fully-loaded.
- Another problem is the possible package damage due to improper stacking configurations.
- How to improve space utilization of the trailer to reduce costs?

PROMAT

CUSTOMER PROBLEM STATEMENT

Problem: How to improve efficiency of trailer loading operations?

ADVANCED LOAD ANALYTICS

Solution: Optimize loading operations in real-time and reduce costs

Load Speed, Efficiency and Utilization

Trailer Load Analytics

TLA VIDEO

TRAILER LOAD CHALLENGES

Efficiency: Trailer space is not efficiently utilized

- Typical utilization around 70% full
- Even a slight increase leads to significant savings
- System relies mostly on experience of loaders

Quality: Boxes are not stacked properly

- Usually, the "T-formation" rule is not observed
- Exacerbate the previous problem
- Packages may be damaged due to improper stacking

Feedback: Limited visibility to performance & safety issues

- No objective evaluation of loader performance
- Service managers have limited real-time visibility
- Loader feedback is provided mostly after the fact

ANALYTICS

Safety

- Proper Lifting
- Hazardous Material
- Package Wall Construction

Theft, Loss, Damage

- Package Wall Construction
- Theft Watch

Employee Performance Improvements

- Performance Metrics
- Performance Incentive
- Teaming (local, regional)

Communication

- Gesture Language
- Scheduling, Notification & Feedback **Financial**
- Cost Correlation

BUSINESS IMPACT

- OSHA Performance
- Workmen's Comp Ins/Claims
- HMTA & Related Mitigation
- Workmen's Comp Ins/Claims
- Behavior Deterrent
- Damage Claim Mitigation
- Loss Claim Mitigation
- Operations Efficiency & Labor negotiation (Empirical Data)
- Labor Goodwill, Profile, & Retraining
- Competition-based Results & Minimize
 Employee Turnover
- Operations Efficiency
- Operations Management
- Enhanced Decision Support
- "Everyone is an Owner" Reinforcement

LOADER MONITORING ANALYTICS

- Detect & track loaders to improve trailer fullness accuracy
- Safety: Detect improper lifting
- Communication: Recognize gestures

COMMUNICATE BY GESTURE

IMPROPER LIFTING

Analytics, Solving Another Problem

Problem: CONVEYOR BELT JAM MANAGEMENT

USE CASE

PROBLEM DESCRIPTION

- Automation is finding itself into more and more warehouse operations
- Existing distribution centers with conveyors have frequent belt jams: 60-70 jams/night or more in many high-speed operations
- Jam cost: Labor, damaged goods, operation disruption
- Jam causes:
 - Large packages get stuck at choking points
 - Multiple packages combine to bind together and get stuck
 - Packages get caught on the apparatus (e.g. cardboard corner or flap, mesh bag catches on sheet metal, etc.)
- It's cost prohibitive to upgrade to newer facilities that have fewer jams

PROMAT PROMAT

CURRENT SOLUTION

Operations control center

- Typically analog cameras have been installed over the years
- Operations centers use a set of monitors to look for jams (reactive)
- One worker monitors all cameras, controls belts stop/go, and dispatches jam breakers. Requires manning during entire production run

SOLUTIONS

Jam Detection:

- Detect jams sooner and more reliably
- Send jam signal to control center
- Control center stop belts and dispatch workers

Jam Prediction:

- Predict jams before they actually occur
- Send jam probability signal to control center
- Control center may stop belts and dispatch workers

Jam Prevention:

- Predict jams before they occur
- Send signal to belt control switch to slow down related belts and notify workers

Proactive use of real-time analytics!

BIG DATA OPPORTUNITIES

OFFERING	DESCRIPTION
Trailer Load Analytics	 Extensible Dock Door platform (for adding other sensing applications), Near Real-time Cubes Scores, Load Speed, Load Quality, Safety, drives corrective actions to optimize trailer utilization
RFID RTLS	Cross-Dock RFID reader infrastructure for pallet level location and tracking
Smart Trailer	• Extensible platform for adding M2M applications (location, tire pressure, weight, door open/close, trailer contents etc.), 3G/4G radio, alternative power, improved diagnostics and troubleshooting
Handheld Dimensioning	 Hand-held box and pallet 3D dimensioning solution, robust measurement in a challenging environment (e.g. low-light, clutter), new technology to dimension non-cuboid shaped boxes & pallets
Smart Package	• WiFi ID Tag for location and tracking (e.g. "put a pin on a map"), extensible sensing technologies (shock detection, temperature, vibration, gases, etc.)
Dynamic Dimensioning	Exploring fixed dimensioning of moving cargo through the dock door for freight operations

Important Adjacencies

Peripheral Sensors (IoT)

- Tire Pressure
- Weight
- Seat belt detection
- Open door sensor (trailer)
- Refrigerated goods sensors
- Driver drowsiness sensors

Data from Mobile Computer --

- GPS location
- Delivery/Pick-up locations (Business Data)
- Traffic/accident/construction reports

Local analytics

- Real-time information for the driver
- Fuel efficiency
- Time/distance to refuel
- Suggested changes to driving
- Gamification
- Routes to avoid

Via J1979/ J1939/ J1708 adapter

Display to driver without distracting

- Window projection
- In-dash display
- Audible (high priority alerts)

PROMAT

Data from ECU

- Speed
- Fuel Efficiency
- Distance travelled over time
- Acceleration and Braking intensity/frequency
- RPM over time
- Idle time

Transmit over WAN connection to company server

- Average efficiency (idle time, fuel/pkg, time between maintenance)
- Identify outliers (low performers should emulate high performers)
- Monitor CO2 creation (could be mandated in future)
- Other KPIs

SMART FLEET

Combining Telematics, The Device, And lot

Mobile Analytics Platform (MAP) – gives mobile visibility/control

- Applies to: Smart Trailer, Delivery Truck, Airplane, Drop Boxes, Containers
- 802.11 AP (multi-purpose mobile hotspot, main initial use case Smart Package)
- Backhaul
 - Long Backhaul & Mobility: WAN LTE gateway (2-5km range)
 - Short Backhaul & Mobility: Wi-Fi
- Unique ID for equipment/asset Tag Tracking
- GPS locationing
- Data storage (1GB), Processing (1GHz class CPU), and Mechanically Rugged
 - Geo-fence storage
 - Future applications
- USB2.0, RS-232, micro SD, TBD peripherals
- Easy to deploy/provision
- Modular Power Sources (Solar, rechargeable, in-vehicle, power line, wireless)
- Multiple modalities
 - Independent/Stand Alone (spot trailer, delivery truck, drop box)
 - Paired (trailer to cab/tractor, delivery truck or cab/tractor to personnel device(s))
 - Docked (vehicle to DC/Hub; spot trailer to customer site)
- Automation (alerts/notifications based on frictionless workflows, e.g. customer site arrival events and Smart Package verification)
- Sensing aggregation (vehicle and variable environments)
- Design for adjacent technologies (Pair with TLA Platform at dock door)

Smart Container

• Security

Sensing:

- Tire Pressure (fuel efficiency, lifespan)
- · Miles (tire replacement | scheduled maintenance)
- Weight
- Trailer systems (brake light, 7-way power status)

Smart Cab

Researching

Platform:

- GPS | WAN | WiFi
- Optional BTLE | Dash 7 | LoRa
- Solar Power | Battery | 7 Way
- Computing | Scripting | Storage
- Geo-Fencing

Sensing:

- Dock Door Unique ID
- Loader | Unloader ID
- Packages | Equipment

Smart Delivery

Telematics

REAL-TIME LOCATIONING

PROMAT

SMART PACKAGE

Solution Overview

Sensing Objects of Interest

- Packages
- Pallets
- Trailers
- Equipment

Electronic Label (& other form factors)

- 802.11 Std based
- Ultra Low Power & Disposable, Eco-friendly
- Read/Writeable for dynamic labeling
- Flexible, very low profile tag using:
 - Printed battery & electronics | System-in-Foil technology
 - Printed barcode and serial number for provisioning
- Ability to sense:
 - Movement, vibration (accelerometer), presence
 - Temperature, Humidity
 - Toxic gases, Explosives
- Extremely easy to provision & use Like postage stamps

HE INDUSTRY THAT MAKES SUPPLY CHAINS WORK®

- Activation of Tag: Removing the tag from the roll or booklet, activates it for provisioning (IP Pending)
- Provisioning of Tag: Via WiFi from any mobile computer, smartphone app, or desktop

Integration of thin-film components (battery, sensors, ...)

DIMENSIONING

Solution Overview

Mobile Dimensioning:

- Hand-held box and pallet 3-D dimensioning solution
- Using newly emerging 3-D low-cost sensors and 3-D processing technology
- Robust measurement in a challenging environment (e.g. low-light, clutter)
- Exceeds the performance of RGB camera and label based solutions
- Creating new technology to dimension cuboid shaped boxes & pallets
- Extending technology to dimension irregular shaped boxes and pallets
- Applies to field workers (LTL, Delivery/Pickup etc.)

Dynamic Dimensioning (Fixed)

- Wall or ceiling mounted 3-D dimensioning solution
- Dimensioning mobile pallets (80% of freight) (i.e. a type of scan tunnel)
- Extending technology to dimension irregular shaped items (20%)
- Robust measurement in a challenging environment
- Applies to freight & parcel (x-Docking etc.)

PACKAGE DIMENSIONING

Pallet Dimensioning

- ... can be inputs to volumetric weight measurement
- ...can move towards vwm profiles

RFID RTLS

RFID RTLS CONCEPT

Objective

- Track each pallet in real-time
- · Identify the door where pallets enter or leave from
- Locate pallets sitting in staging areas to better than 4' accuracy

Low-cost Reader Hardware

- Advanced Access Points
- Omni-directional phased array antenna structure

Reader-based Core Location Technology -

Uses adaptive monopulse method for Angle of Arrival (AOA) estimations

Server-based Analytics Software

- Tracking each pallet on a dock within a 3-4 feet range
- · Know precisely where each pallet resides on
- Tie in with loading systems that optimize trailer loading

HANDS-FREE COMPUTING

Future Concept

- Information when you need it in appropriate task sequence
- Information displayed as real-time overlay augmented reality
- Accessing information does not interrupt workflow – no stopping to check display

FOR MORE INFORMATION:

Speaker email: mike.maris@zebra.com Website: <u>www.zebra.com/TL</u> Or visit ProMat Booth #S2459

