"Turbo-charging" Your Forklift Fleet: The Power of Industrial Lithium Forklift Batteries

Presented by: Samer Elshafei Director of Commercial Product and Business Development selshafei@navitassys.com

© 2017 MHI® Copyright claimed for audiovisual works and sound recordings of seminar sessions. All rights reserved.

Agenda

- Navitas Introduction
- Market Review / Segmentation
- Technology Review
- NYSERDA Project Results
- Case Study Deployments
- Financial Outlook
- Additional Benefits

SOLVE FOR X. Navitas Introduction

	Lithium Battery Solutions	System Design and Assembly	Electronics & Battery Management Systems (BMS)	Custom Cell Development	Analytical and Testing	Cell Chemistry R&D			
Capability									
Scope	 12V NATO 6T Battery 24V NATO 6T Battery Multi-kWh motive application batteries 	 In-house battery pack design development, prototyping, and manufacturing 	 In-house BMS Design In-house SMT line 	 Various Li-ion chemistries developed High power and High energy density chemistries 	 500+ MACCOR test channels Cell tear down analysis In-house UL/UNDOT testing 	•Custom anode, cathode, and electrolyte development •Battery materials evaluation			
PALLA									

SOLVE FOR X. The Material Handling Industry is Prime to adopt Lithium

PROMAT

The material handling market is poised to capitalize on cost efficiencies created by the substantial investments in cell technology made by other industries

THE INDUSTRY THAT MAKES SUPPLY CHAINS WORK®

SOLVE FOR X. Survey Indicates Lithium Optimism

9. What sources of motive power will show the most growth in electric forklift trucks in the next three years? Please rate the following on a scale of 1 to 3 (where 1=-10% to 0%, 2=>0% to 10%, 3=11% to 20%)

Motive Power Source	1 -10% to 0%	2 >0% to 10%	3 11% to 20%
Lithium Ion	1	10	4
Lead Acid Battery	5	8	2
Fuel Cells	7	8	0

of respondents

ITA Business Trend Survey 2016

19

SOLVE FOR X. Lithium Forklift Product Categories

<u>Class 1:</u> Electric Counterbalance (Cushion or Pneumatic Tire)

Class 2: Electric Narrow Aisle

Class 3: Electric Pallet Jacks

Class 4: Internal Combustion, Cushion Tire Counterbalance

<u>Class 5:</u> Internal Combustion, Pneumatic Tire Counterbalance

ROMAT

SOLVE FOR X. Navitas Starlifter Lithium Product Overview

- ESS Battery
 - 24V, 36V, 48V Battery Packs
- Counterweight Tray
 - Weight and Footprint Replacement
 For Lead Acid battery packs
- UIM (User Interface Module)
 - Visual and Audio Indicator of lithium battery pack information for truck operators
 - Provides warnings for low state of charge and faults
 - Diagnostics information display

Primary Lithium Applications

Fast Opportunity Charging

Capable of Charging in 1-2 Hours; Lead Acid Charger Compatible

Superior Cold and Hot Performance

40% Increased runtime of lead acid in freezer warehouse temperature

Multi-Shift Operations

High Performance, Long Run Time, Long Life

Lithium Value Propositions

Lithium Forklift Battery Program

RAYMOND

SOLVE FOR X. NYSERDA Executive Summary

- The objectives of the project were:
 - 1. Demonstrate Lithium Battery is viable for lift truck applications through bench level performance and safety testing
 - 2. Develop and release a public interface specification to include truck, energy storage system (battery) and charger;
 - 3. Demonstrate a Lithium Battery's performance in real-world, in-truck application including opportunity/fast charging (enabling one battery per truck), cold temperature robustness and reduced overall fleet operating costs;
 - 4. Advance the technology from TRL4 (component level technology development) to TRL 6 (engineering scale technology demonstration).
- Upon completion of the project, the summary results were:
 - 1. Developed and published a Public Standard Interface Specification for all trucks, batteries and chargers
 - 2. Successfully demonstrated LIB as drop-in replacement for LAB in a Reach Truck
 - 3. 17% productivity improvement with LIB and opportunity/fast charging (pallet moves per operational hour) demonstrated at customer site
 - 4. Demonstrated ability to operate with reduced lithium nameplate capacity of 40-50% of lead acid
 - 5. Developed comprehensive ROI calculator to determine payback period for single truck (16 months) and full fleet (10 months) conversions from LAB to LIB. Installing a new fleet of truck with LIB over LAB results in a 9% overall savings (capital investment and labor) over a six-year period.
 - 6. Advanced the technology to a TRL 8 (actual system qualification)

NYSERDA Project Tasks

- 1. Requirements and Specification Development
 - 1. Standard Communication Interface between lithium battery, forklift and charger
 - 2. Mechanical Design Requirements (Wide Range of Battery Sizes)
 - 3. Truck Energy Demand Profile
 - 4. Charging Cycle Definition
- 2. Module Level Battery Evaluation and Testing
 - 1. Bench Testing
 - 2. Performance Baseline (Various Temperatures)
 - 3. Heavy Duty Cycle with Opportunity/Fast Charging
- 3. System Design (Battery to Truck and Charger)
 - 1. Electrical/Communication Systems
 - 2. Mechanical System Design
 - 3. FEA and Mechanical Modeling
- 4. Battery Integration and Qualification
 - 1. Battery Install, Integration and Check Out
 - 2. In Truck Confirmation Testing
- 5. Customer System Evaluation
 - 1. Lithium vs Lead Acid Battery Testing Summary

SOLVE FOR X. NYBEST Performance Parameters Validated

Parameter	Results	Notes
Actual Ah Capacity Under Real World Forklift Load vs. Manufacturers Ah Nameplate	•	Measured 109%
Ability to Support Real World Forklift Load in Hot Ambient Temperature	•	Measured 112%
Ability to Support Real World Forklift Load in Freezer Warehouse Ambient Temperature	✓	Measured 40% increase over Lead Acid
Ability to Support Real World Forklift Operation for 14 Continuous Shifts with No Battery Change-Outs Utilizing Opportunity Charging	•	Completed 14 continuous shifts

SOLVE FOR X. Maines Field Trial Success & UL Safety Validation

Parameter	Results	Notes
Safety Testing – Thermal Runaway	•	Exceeded expectations with no cell propagation and 2 minute venting
MAINES FIELD TRIAL Forklift driver reaction	✓	Drivers loved the LIB
Lift Speed and Truck Acceleration	•	Notable increase by drivers, especially at bottom of SOC vs. lead acid
Productivity vs. Lead Acid Truck	•	17% increase in pallets/hour using LIB due to faster trucks and no battery swaps
LIB Zero-Maintenance	1	5 weeks field operation without maintenance
Opportunity Charging	•	700Ah LIB battery with no swap-outs did the job of a 1240Ah lead acid
Battery Efficiency	√	50% less waste heat from LIB vs. LAB 2% more work done with 10% less Ah's with LIB

SOLVE FOR X. Duty Profile and Test Set Up

95% percentile user duty profile

Des	cription	Est Time
1.	Place module in environmental chamber. Soak until battery stable at 20	<1 hr
	±°1 C	
2.	CC charge at 72A until Max Voltage (43.8V) reached, then CV charge at	2 hrs
	43.8V until Current <2A	
3.	Run sequence A (500 second drive cycle) until lower voltage limit	5 hrs
	reached (30 V). Estimated at 34 cycles	
4.	Repeat charge and discharge (steps 2 & 3) 3x	
5.	Set chamber to 20°C, soak until stable	

SOLVE FOR X. Forklift Duty Cycle Validation

- Lithium battery maintained good temperature over forklift duty cycle
- Lithium battery discharged total **109%** of manufacturers Ah nameplate rating over forklift duty cycle

SOLVE FOR X. Forklift Duty Cycle – High Temperature

- Lithium battery maintained in-spec temperatures over forklift duty cycle when starting hot-soaked at 40 degrees Celsius (104 Fahrenheit)
- Lithium battery discharged total 112% of manufacturers Ah nameplate

SOLVE FOR X. Forklift Duty Cycle – Cold Temperature

- Lithium battery provided forklift power requirements with no problems when cold soaked in -20 and -10 degree Celsius "freezer" type environments
- Lithium battery discharged total 70% of manufacturers Ah nameplate while cold vs. typical 50% effective capacity with lead acid

THE INDUSTRY THAT MAKES SUPPLY CHAINS WORK COPYRIght Navitas Systems

SOLVE FOR X. Opportunity Charging Validation

- Key value add from Navitas lithium battery is ability to utilize 1 battery per truck for 3-shift per day operation with short high-power opportunistic charging during worker breaks – NO BATTERY CHANGES
- Testing simulated actual forklift load and opportunity charging profile on Navitas lithium battery module
- Battery forklift load was supplied by Raymond as typical customer use case profile
- The testing results (next slide) support continuous 24-hour 3 shift per day operation using opportunity charging

Time	Load Profile Sequence
1.75 hours	Simulated forklift battery operating load profile from Raymond: typical work period
15 minutes	Opportunity charging profile for 15 min workers break 1
1.75 hours	Repeat work sequence
30 minutes	Opportunity charging profile for 30 min workers lunch
1.75 hours	Repeat work sequence
15 minutes	Opportunity charging profile for 15 min workers break 2
1.75 hours	Repeat work sequence
15 minutes	Run opportunity charging profile for 15 min at shift change
TOTAL: 8 hours	Total work: 7 hours Total break + opportunistic charging: 1 hour

SOLVE FOR X. Opportunity Charging Totalidation

- Lithium battery completed **14 continuous shifts** using simulated forklift duty cycle and short opportunity charging during worker break periods
- Beginning battery capacity start of first shift: 100% SOC
- Ending battery capacity at 14th continuous duty shift: 7% SOC
- Test was performed on Navitas lithium cells without Navitas active balancing BMS – Results would have been even better with active balancing turned ON

Starlifter Lithium Power Equals SOLVE FOR X. Increase Productivity – Lithium Lifts Loads Consistently **Faster**

Lift Speed Comparison

Starlifter Lithium Power Equals SOLVE FOR X. Increase Productivity – Lithium Lifts Loads Consistently **Faster**

Lift Duration with 1000 lb load

SOLVE FOR X. EDP – Energy Demand Profile Testing

 Highest Demand Conditions Testing – lifting max load to the max height at full speed – lifting a 4500lb load to 300"

SOLVE FOR X. Lead Acid Vs Lithium Field Lift Test

RCCorrnick Place | Chicago April 3-6, 2017 promatshow.com

Lithium Battery – ~12 seconds to lift load to 300"

Lead Acid Battery – ~15 seconds to lift load to 300"

UL Safety Video

- Starlifter Passed Short Circuit Test With Flying Colors
 - Slight smoke for 1 minute then nothing

Customer Evaluation Objectives

Customer Field Testing Objectives:

- 1. Demonstrate lithium technology with fast charging in a cold warehouse at a customer site
- 2. Quantify productivity improvements of LIB over LAB
- 3. Compare Truck and Battery Performances
- 4. Quantify Labor Hours Associated with Battery Changing

Successful Field Demonstration at Maines

Truck #	Battery	Nameplate Capacity (Ah)	Calculated Energy (kWh)
F105	LAB	1240	44
F102	LIB	700	28

The operators enjoyed using the LIB truck (F102) and commented that it was more responsive than the LAB system (F105), and maintained consistent performance even at low BSOC, versus the LAB which drops off significantly below 50% BSOC.

Maintained a high state of charge with opportunity fast charging

Practical Capacity Comparison

- In a cold warehouse the practical capacity percentage seen:
 - 70% of Starlifter Lithium Nameplate
 - 40% of Lead Acid Nameplate
 - Both result in ~500Ah practical capacity
- Lithium Cycle = 80% DOD Cycle
- Lead Acid Cycle = Battery Change

SOLVE FOR X. Lithium Power Means More Productivity

		Week 1	Week 2	Week 3	Week 4	Week 5	Total
-	pallets moved (#p)	756	707	708	1060	760	3991
105 LAB	operational hours (hr)	42	37	42	53	42	216
Щ	avg #p/hr	18	19	17	20	18	18
1	pallets moved (#p)	921	730	711	865	781	4008
102 LIB	operational hours (hr)	43	37	36	39	37	192
Щ	avg #p/hr	21	20	20	22	21	21

17% Increased Pallets Moved Per Hour

SOLVE FOR X. Charging Eliminates Non-

Lithium Batteries with Fast **Productive Time**

- Battery Changes occur approximately 1 time per shift
 - Sometimes more as the lead acid batteries age and performance decreases become more noticeable
- The Lead Acid Truck averaged 12.6 minutes of lost time per lead acid battery changeout over the program test period

Non-productive time

Maines Driver Survey Feedback – Lead Acid

- How satisfied are you with the performance of lead acid powered forklift <u>at the beginning</u> of your shift or after a battery change/opportunity charge under the following categories using a scale of 1 to 5.
 - 1 Does not meet requirements
 - 2 Slightly meets requirements
 - 3 Moderately meets requirements
 - 4 Meets requirements
 - 5 Exceeds requirements

(circle your response)

f.	Overall performance	1	2	3	4	5
g.	Power	1	2	3	4	5
h.	Forklift Range	1	2	3	4	5
i.	Consistent speed	1	2	3	4	5
i.	Load Capacity	1	2	3	4	5

<u>*For the first 2 hours of</u> <u>a fully charged LAB that</u> <u>is in good condition.</u> <u>Due to lack of watering</u> <u>they don't stay in good</u> <u>condition</u>

 How satisfied are you with the performance of lead acid powered forklift <u>at the end of your</u> <u>shift</u> or before a battery change/opportunity charge under the following categories using a scale of 1 to 5.

(circle your response)

5

a.	Overall performance		2	3	4	
b.	Power	1	2	3	4	
c.	Forklift Range	1	2	3	4	
d.	Consistent speed	1	2	3	4	
e.	Load Capacity	1	2	3	4	

Maines Driver Survey Feedback - Lithium

- 4. How satisfied are you with the performance of the lithium battery powered forklift <u>at the beginning of your shift</u> or after a battery change/opportunity charge under the following categories using a scale of 1 to 5.
 - 1 Does not meet requirements
 - 2 Slightly meets requirements
 - 3 Moderately meets requirements
 - 4 Meets requirements
 - 5 Exceeds requirements

(circle your response)

p.	Overall performance	1	2	3	4	5
q.	Power	1	2	3	4	5
r.	Forklift Range	1	2	3	4	5
s.	Consistent speed	1	2	3	4	5
t.	Load Capacity	1	2	3	4	5

5. How satisfied are you with the performance of the lithium battery powered forklift <u>at the</u> <u>end of your shift</u> or before a battery change/opportunity charge under the following categories using a scale of 1 to 5.

		(circle your response)				
f.	Overall performance	1	2	3	4	5
g.	Power	1	2	3	4	5
h.	Forklift Range	1	2	3	4	5
i.	Consistent speed	1	2	3	4	5
j.	Load Capacity	1	2	3	4	5

SOLVE FOR X. Maines Driver Survey Feedback

- 6. Answer the following question comparing Lead-acid battery against Lithium Ion powered forklifts using a scale of 1 to 3.
 - 1 Lead-acid batteries outperform Lithium Ion Batteries
 - 2 No difference
 - 3 Lithium Ion Batteries outperform Lead-acid batteries

- b. Power
- c. Forklift Range
- d. Consistent speed
- e. Load Capacity

*For this project the lithium battery was appropriately sized to match the operation for cost effectiveness, not necessarily to extend range in this application although it might be a sought-out feature by the driver

- Comments/Observations:
- 7. Did you feel overall the lithium battery improved your productivity on the job? (circle your response)
 - No, it was worse

2) Hard to tell

8. After your experience with Lithium batteries, given a choice between a lead acid powered truck and lithium truck, which one would you request? (circle your response)

SOLVE FOR X. Navitas Starlifter Installation Examples

PPLY CHAINS WORK

SOLVE FOR X. ³ Shift Cold Storage Installations

- Cold Storage Distribution Facility 24/7 Operation
 - Productivity measurement by quota % expected by baselined lead acid performance and assigned tasks then compared to historical performance data by driver
 - <u>"Employee's driving the forklift saw an average 7%</u> increase" – LMS Data Analyst
- Trucking / Third Party Logistics "Fresh" Distribution Center – 24/7 Operation
 - Productivity measured by driver as pallets per hour
 - <u>211 pallets per day historical performance with lead</u> <u>acid, 226 pallet per day with Starlifter lithium</u> <u>battery = 7% productivity improvement</u>
 - +3 Hours / Day increased uptime for lithium truck, the lead acid truck wasn't able to support the operations needed and required additional "jumper" trucks to support the operation

support the operation ***Both facilities already had fast charging – the data** <u>displayed is compared to lead acid with fast</u> <u>charging, no battery changing operation</u>

SOLVE FOR X. Multi-Shift Heavy Duty Installations

- Consumer Goods Distribution Center 24/7 2 Shift Operation
 - Currently performing lead acid battery changing because of the limited amount of charging time available, <3 Hours Per Day
 - <u>Lithium will enable them to maintain full</u> <u>uptime with a single battery per truck and</u> <u>charge during just breaks, lunches and shift</u> <u>change</u>
- Government Defense Logistics 2 Shift Operation
 - Currently in process of transitioning from lead acid battery changing to fast charging lithium
 - Enabling the increase of operational readiness for peak demands while maintaining or reducing fleet size and reducing overall operational costs

PROMAT 🕅

SOLVE FOR X. Maintenance Loves the Lithium Forklift

Answer the following question comparing Lead-acid battery against Lithium Ion powered forklifts using a scale of 1 to 3.

- 1 Lead-acid batteries outperform Lithium Ion Batteries
- 2 No difference
- 3 Lithium Ion Batteries outperform Lead-acid batteries
- a. Overall performance
- b. Power
- c. Forklift Range
- d. Consistent speed
- e. Load Capacity

Comments/Observations:

Did you feel overall the lithium battery improved your productivity on the job? (circle your response)

- 1) No, it was worse
- 2) Hard to tell

After your experience with Lithium batteries, given a choice between a lead acid powered truck and lithium truck, which one would you request? (circle your response)

Survey Completed by: Facility Maintenance Manager

For More Information:

Samer Elshafei selshafei@navitassys.com <u>www.navitassys.com</u> www.lithiumforkliftpower.com

Or visit ProMat Booth #S5630

SOLVE FOR X. Customer Evaluation Profile Summary

Even with the variation in travel and lift distances, the LIB clearly demonstrates a productivity increase over the LAB. This is due to the higher performance of the LIB truck (faster lifts and faster acceleration), and the performance drop off seen in a LAB at lower BSOC.

